Fukushima – 2.3 – Damaged Reactor Buildings (Satellite, March 16, 2011)

ECOCIDE
noun
destruction of the natural environment,
especially when deliberate.

FUKUSHIMA NUCLEAR DISASTER


Damaged Reactor Buildings

The Official Story

FUKUSHIMA DAIICHI
CORE MELTDOWNS IN UNITS 1, 2, AND 3


 

The amount of damage sustained by the reactor cores during the accident, and the location of molten nuclear fuel (“corium”) within the containment buildings, is unknown; TEPCO has revised its estimates several times. On 16 March 2011, TEPCO estimated that 70% of the fuel in Unit 1 had melted and 33% in Unit 2, and that Unit 3’s core might also be damaged. As of 2015 it can be assumed that most fuel melted through the reactor pressure vessel (RPV), commonly known as the “reactor core”, and is resting on the bottom of the primary containment vessel (PCV), having been stopped by the PCV concrete. In July 2017 a remotely controlled robot filmed for the first time apparently melted fuel, just below the reactor pressure vessel of Unit 3.

TEPCO released further estimates of the state and location of the fuel in a November 2011 report. The report concluded that the Unit 1 RPV was damaged during the disaster and that “significant amounts” of molten fuel had fallen into the bottom of the PCV. The erosion of the concrete of the PCV by the molten fuel after the core meltdown was estimated to stop at approx. 0.7 m (2 ft 4 in) in depth, while the thickness of the containment is 7.6 m (25 ft) thick. Gas sampling carried out before the report detected no signs of an ongoing reaction of the fuel with the concrete of the PCV and all the fuel in Unit 1 was estimated to be “well cooled down, including the fuel dropped on the bottom of the reactor”. Fuel in Units 2 and 3 had melted, however less than in Unit 1, and fuel was presumed to be still in the RPV, with no significant amounts of fuel fallen to the bottom of the PCV. The report further suggested that “there is a range in the evaluation results” from “all fuel in the RPV (none fuel fallen to the PCV)” in Unit 2 and Unit 3, to “most fuel in the RPV (some fuel in PCV)”. For Unit 2 and Unit 3 it was estimated that the “fuel is cooled sufficiently”. According to the report, the greater damage in Unit 1 (when compared to the other two units) was due to the longer time that no cooling water was injected in Unit 1. This resulted in much more decay heat accumulating, as for about 1 day there was no water injection for Unit 1, while Unit 2 and Unit 3 had only a quarter of a day without water injection.

In November 2013, Mari Yamaguchi reported for Associated Press that there are computer simulations that suggest that “the melted fuel in Unit 1, whose core damage was the most extensive, has breached the bottom of the primary containment vessel and even partially eaten into its concrete foundation, coming within about 30 cm (1 ft) of leaking into the ground” – a Kyoto University nuclear engineer said with regard to these estimates: “We just can’t be sure until we actually see the inside of the reactors.”

According to a December 2013 report, TEPCO estimated for Unit 1 that “the decay heat must have decreased enough, the molten fuel can be assumed to remain in PCV (primary containment vessel)”.

In August 2014, TEPCO released a new revised estimate that Reactor 3 had a complete melt through in the initial phase of the accident. According to this new estimate within the first three days of the accident the entire core content of Reactor 3 had melted through the RPV and fallen to the bottom of the PCV. These estimates were based on a simulation, which indicated that Reactor 3’s melted core penetrated through 1.2 m (3 ft 11 in) of the PCV’s concrete base, and came close to 26–68 cm (10–27 in) of the PCV’s steel wall.

In February 2015, TEPCO started the muon scanning process for Units 1, 2, and 3. With this scanning setup it will be possible to determine the approximate amount and location of the remaining nuclear fuel within the RPV, but not the amount and resting place of the corium in the PCV. In March 2015 TEPCO released the result of the muon scan for Unit 1 which showed that no fuel was visible in the RPV, which would suggest that most if not all of the molten fuel had dropped onto the bottom of the PCV – this will change the plan for the removal of the fuel from Unit 1.

In February 2017, six years after the disaster, radiation levels inside the Unit 2 containment building were crudely estimated to be about 650 Sv/h. The estimation was revised later to 80 Sv/h. These readings were the highest recorded since the disaster occurred in 2011 and the first recorded in that area of the reactor since the meltdowns. Images showed a hole in metal grating beneath the reactor pressure vessel, suggesting that melted nuclear fuel had escaped the vessel in that area.

In February 2017, TEPCO released images taken inside Reactor 2 by a remote-controlled camera that show a 2 m (6.5 ft) wide hole in the metal grating under the pressure vessel in the reactor’s primary containment vessel, which could have been caused by fuel escaping the pressure vessel, indicating a meltdown/melt-through had occurred, through this layer of containment. Ionizing radiation levels of about 210 sieverts (Sv) per hour were subsequently detected inside the Unit 2 containment vessel. Undamaged spent fuel typically has values of 270 Sv/h, after ten years of cold shutdown with no shielding.

In January 2018, a remote-controlled camera confirmed that nuclear fuel debris was at the bottom of the Unit 2 PCV, showing fuel had escaped the RPV. The handle from the top of a nuclear fuel assembly was also observed, confirming that a considerable amount of the nuclear fuel had melted.

Damage to unit 4

Reactor 4 was not operating when the earthquake struck. All fuel rods from Unit 4 had been transferred to the spent fuel pool on an upper floor of the reactor building prior to the tsunami. On 15 March, an explosion damaged the fourth floor rooftop area of Unit 4, creating two large holes in a wall of the outer building. It was reported that water in the spent fuel pool might be boiling. The explosion was later found to be caused by hydrogen passing to unit 4 from unit 3 through shared pipes. As a result, from the explosion, a fire broke out and caused the temperature in the fuel pool to increase to 84 °C (183 °F). Radiation inside the Unit 4 control room prevented workers from staying there for long periods. Visual inspection of the spent fuel pool on 30 April revealed no significant damage to the rods. A radiochemical examination of the pond water confirmed that little of the fuel had been damaged.

In October 2012, the former Japanese Ambassador to Switzerland and Senegal, Mitsuhei Murata, said that the ground under Fukushima Unit 4 was sinking, and the structure may collapse.

In November 2013, TEPCO began moving the 1533 fuel rods in the Unit 4 cooling pool to the central pool. This process was completed on 22 December 2014.

Source: Wikipedia

Fukushima Daiichi Explosion

The Truth

FALSE FLAG

A false flag is a covert operation designed to deceive; the deception creates the appearance of a particular party, group, or nation being responsible for some activity, disguising the actual source of responsibility.

Click above for full decode

SUBLIMINAL
adjective

(of a stimulus or mental process) below the threshold of sensation or consciousness; perceived by or affecting someone’s mind without their being aware of it.

HISTORICAL TRUTH

THE TIME IS NOW:

AWAKEN HUMANITY

END RADIOACTIVE
DUMPING

SAVE THE
OCEANS

HOLD THEM ALL ACCOUNTABLE

Comments are closed.